Contents

  • Cover
  • Front matter
  • Preface
  • Scope, purpose and use
  • 1. Terminology, economic analysis, risk management
    • 1.1 Terminology
    • 1.2 Economic analysis
    • 1.3 Understanding risk
  • 2. Regulations, consents and approvals
    • 2.1 National Environmental Standards for Plantation Forestry (NES-PF)
    • 2.2 Heritage New Zealand Pouhere Taonga
    • 2.3 The Health and Safety at Work Act
    • 2.4 NZ Transport Agency approval for access onto state highways
    • 2.5 District council approval for access onto council roads
  • 3. Planning for roads
    • 3.1 Road classes
    • 3.2 Arterial roads
    • 3.3 Secondary roads
    • 3.4 Spur roads
    • 3.5 Establishment tracks
    • 3.6 Spatial information
    • 3.7 Initial field work
    • 3.8 Manual design method: Stepping out a roadline on a topo
    • 3.9 Running a grade line in the field
    • 3.10 Full road design
    • 3.11 Working with road survey data
    • 3.12 Geometric road design
    • 3.13 Curve widening
    • 3.14 Horizontal alignment
    • 3.15 Vertical alignment
    • 3.16 Calculating the safe stopping distance
    • 3.17 Setting out the roadline
  • 4. Planning for landings
    • 4.1 Common landing layouts
    • 4.2 Landing planning considerations
  • 5. Road and landing construction
    • 5.1 Soil and rock properties
    • 5.2 Managing adverse environmental effects
    • 5.3 Marking clearing widths
    • 5.4 Roadline salvage
    • 5.5 Daylighting
    • 5.6 Road formation
    • 5.7 Drainage control during earthwork construction
    • 5.8 Earthwork machinery
    • 5.9 Estimating machinery production
    • 5.10 Stabilising cut and fill slopes during construction
  • 6. Pavement design, subgrade preparation, pavement construction
    • 6.1 Traffic loading
    • 6.2 Evaluating subgrade properties
    • 6.3 Determining pavement depth
    • 6.4 Pavement material properties
    • 6.5 Compaction of subgrade and pavement
    • 6.6 Compaction equipment
    • 6.7 Pavement construction
    • 6.8 Weak subgrades
    • 6.9 Chemical stabilisation of pavement or subgrade
  • 7. Erosion, sediment and slash control structures
    • 7.1 Ditches
    • 7.2 Cut-outs
    • 7.3 Berms
    • 7.4 Drainage culverts
    • 7.5 Flumes
    • 7.6 Sediment traps and soak holes
    • 7.7 Silt fences
    • 7.8 Sediment retention ponds
    • 7.9 Debris traps
  • 8. River crossings
    • 8.1 Fish passage
    • 8.2 Selecting the location and crossing type
    • 8.3 Fords
    • 8.4 Temporary river crossings
    • 8.5 Single culvert river crossings
    • 8.6 Battery culvert river crossings
    • 8.7 Drift deck river crossings
    • 8.8 Single span bridge river crossings
    • 8.9 Prediction of flood flows, and sizing culverts
  • 9. Road maintenance, repairs and upgrades
    • 9.1 Maintenance programme
    • 9.2 Economic evaluation of road maintenance projects
    • 9.3 Managing maintenance requirements
    • 9.4 Commonly used maintenance machinery
    • 9.5 Road surface maintenance
    • 9.6 Road foundation maintenance
    • 9.7 Landing rehabilitation and decommissioning
    • 9.8 Roadside vegetation maintenance
    • 9.9 Erosion and sediment control structure maintenance
    • 9.10 River crossing maintenance
  • Forest road engineering terminology
  • References
  • Websites, resources, databases

NZ Forest Road Engineering Manual

  1.  ›
  2. 5. Road and landing construction ›
  3. 5.2 Managing adverse environmental effects
 

5.2 Managing adverse environmental effects

Earthworks can lead to adverse environmental effects, especially the risk of erosion and sedimentation. It is well documented that earthworks are a significant contributor to sedimentation from all forestry operations, including harvesting.

Three FOA publications describe good environmental practice – this Manual and the accompanying Operators Guide, and the Forest Practice Guides. Chapter 2, Regulations, Consents and Approvals, discusses the regulatory requirements that provide rules around forestry and its potential adverse environmental effects. These should be referenced when planning or managing earthworks.

The following are important practices:

  • Earthworks should be planned, designed, supervised and constructed by appropriately trained personnel, employing engineering expertise where prudent to do so
  • Comply with all appropriate regulatory requirements, consent conditions and other authorities that relate to the particular earthworks activity
  • Ensure important environmental values and sensitive areas are identified, and appropriate mitigation measures taken to protect these before an operation starts
  • Ensure all construction personnel are aware of and understand the environmental issues, and the required mitigation measures
  • Ensure equipment operation or earthworks activity operates behind a buffer zone, and does not migrate outside the intended zone into sensitive or protected areas such as rivers, wetlands, or archaeological sites
  • Establish and maintain temporary drainage and sediment control during and after the earthworks construction period, until the site has stabilised
  • Ensure erosion and sediment control structures are located and sized to the job
  • Stabilise the site quickly; this may require vegetative and non-vegetative methods
  • Construct stable earthworks fills, and avoid creation of unstable cut slopes
  • Ensure handling of fuels, oils, construction material, waste and possible weed seed transfer is managed to minimise the risk of contamination of the site
  • Avoid construction in wet conditions.
Prev page Next page
Forest Owners Association

© 2023 New Zealand Forest Owners Association

Website by RS